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Abstract This work presents the effect, in terms of 
travel distance and material handling time reductions, 
of an optimal rather than a uniform item allocation in 
one-block picking warehouses, both with and without 
the use of a simple picking heuristic. Since developing 
efficient product-location strategies represents a 
critical issue in Operations Management, due to the 
impact on warehouse performance in terms of both 
service level and operation costs, this paper focuses on 
an effective quantification of obtainable travel time 
reductions, obtaining a significant result for 
manufacturing companies aiming to determine the 
most appropriate material handling resource 
configuration. Building on previous work on the effect 
of slot-code optimization on travel times in single/dual 
command cycles, the authors broaden the scope to 
include the most general picking case, thus widening 
the range of applicability and realising former 
suggestions for future research. 
 
Keywords Order Picking, Travel Distance, 
Random/Optimized Product Allocation, One-Block 
Warehouse, Material Handling, Slot-Code Allocation 
Optimization, Storage Assignment 

 

1. Introduction 

According to several reports, about 23% of logistics costs 
in the US [1] and 39% in Europe [2] are due to warehouse 
capital and operating costs. Given the extent of this 
impact on companies’ supply chains, cost-effective 
management of warehouses has always been considered 
as critical to the success of businesses [3, 4, 5, 6, 7, 8]. It 
has been suggested that an efficient layout configuration 
and material handling system are, from the warehouse 
perspective, mainly detectable at the organizational stage 
[9, 10, 11, 12]. The linked costs seem to be mostly induced 
by the use of tracing technologies [13, 14, 15] besides 
appropriate item allocation [ 16, 17, 18, 19, 20, 21, 22]. 
 
Order picking is the most labour-intensive and time-
consuming task in most warehouses [23], and improving 
its performance can generally involve huge investments. 
Indeed, up to 55% of total warehouse operating costs 
results from order picking operations [24]. Correct 
management of warehouse storage and picking actions 
can instantly impact the success of logistics operations in 
most manufacturing companies and play a vital role in 
their survival [25]. Each picking order contains a subset of 
items stored in a warehouse; a picking tour specifies the 
sequence in which items will be picked. Thus, an order 
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picking cycle means that workers travel from a common 
pickup/deposit (P/D) or input/output (I/O) point to a 
specific location on the picking list, pick the required 
items and move them back to the I/O point. As 
Christofides underlined in 1975 [26], the routing of 
manual pickers within the aisles of a warehouse can be 
considered as a special case of the well-known travelling 
salesman problem, based on the hypothesis that forklifts 
move following a “Manhattan” (i.e., “rectilinear”, “right-
angle” or “L1”) metric [27]. From an organizational 
perspective, performances of a storage area are based on 
two variables: the space required for item allocation and 
the time needed for their handling [28, 29]. Considering 
the aforementioned warehouse typology, three key 
factors mainly influence the overall travelled distance: 
warehouse space, layout and picking list size [30], based 
on the assumption that workers process only one order at 
a time and that each order does not exceed the forklift’s 
capacity. Due to the great relevance of warehouse 
operations cost savings, this paper focuses on the 
estimation of material handling distance reductions for 
order picking cycles in one-block warehouses; to this end, 
the results of several simulations carried out assuming a 
variable picking list size with optimal item allocation and 
a uniform distribution of storing and picking positions, 
with and without use of a picking heuristic, will be 
shown and analysed.  

2. Previous research 

In pursuit of savings on order pickers and equipment 
optimizing order picking routes – thus choosing the best 
sequence for the order picker to visit specific locations, 
minimizing the distance travelled – several studies have 
been carried out over the past years. Given that the order 
picker has to collect a number of products in specified 
quantities at known locations, the problem of finding the 
shortest order picking route for warehouses with a 
central depot can be solved in running time as linear in 
the number of aisles and the number of pick locations 
[31].  
 
Many authors have focused on modelling approaches to 
improve the efficiency of material handling times to gain 
better performance in the supply chain; several scientific 
contributions have aimed to minimize material handling 
costs or picking operations, evaluating new optimization 
criteria [32, 33, 34, 35, 36, 37, 38].  Lots of studies have 
centred on the general case of the order picking cycle due 
to its importance in increasing operation efficiency and 
decreasing labour workload [39]. The main aims of many 
publications have been the determination of the shortest 
travel distance and the optimal pick tour for a given set of 
pick locations in warehouses with two cross aisles [31] or 
more [40] with a dynamic programming approach. 
Roodbergen and De Koster [41] applied the 
Ratliff/Rosenthal algorithm to warehouses with middle 

cross-aisle warehouses. Focusing on the non-random 
storage policy perspective instead, Hwang et al. [442] and 
Caron et al. [43] modelled an analytical expression 
assuming turnover-based storage policies. Comparisons 
on the optimal routing and heuristics for picking 
problems, however, have rarely been presented [44, 45, 
46].  
 
In 1994, Gelders and Heeremans [47] solved the order 
picking problem by using the branch-and-bound 
algorithm of Little et al. [48] for a simplified warehouse 
layout: reductions gained in terms of total walking 
distance varied between 9% and 40%, depending on the 
number of products to be picked. The problem of finding 
order picking routes in a storage area is often solved by 
the so-called S-shape heuristic, in which order pickers 
move in an S-shaped curve along the pick locations, 
skipping the aisles where nothing has to be picked. More 
advanced heuristics can be found, however, in Hall [49].  
 
Roodbergen and De Koster [50] later applied the Ratliff 
and Rosenthal’s algorithm considering warehouses with 
middle cross aisles. Hwang et al.  [42] and Caron et al.  
[43], on the other hand, modelled an analytical expression 
assuming a non-random storage policy. Petersen [44] and 
De Koster and Van der Poort [45] made an important 
contribution by providing some comparisons on the 
optimal picking tour and heuristics for picking problems. 
As Pohl, Meller and Gue underlined [51], however, a 
closed-form equation to estimate the optimal tour for a 
general number of picks seems not to be available in the 
literature. To forecast an optimal picking tour length, 
simulations using routing heuristics based on the 
hypothesis of a random storage policy have been 
performed [52, 53, 54]. Some authors have also developed 
a procedure for reducing order picking travel distance 
through an order batching optimization heuristic based 
on integer programming. This methodology combines 
several orders into batches to reduce the overall travel 
time [55, 56, 58, 59] but implies high-level computation 
efforts [59].  
 
Based on an integer programming approach, a possible 
mechanism for reducing order picking travel distance 
through a class-based storage method was developed by 
Muppani and Adil [60]. In 2008 the same authors [61] 
presented a possible way to reduce order picking 
operations for class-based storage arrangement, 
developing a nonlinear integer programming method 
using the branch and bound algorithm. In the same year, 
Ho et al. [62] proposed an additional methodology 
aiming at the development of distance or area-based rules 
to minimize the travel distance of pickers; this technique 
is based on order batching procedures for an order-
picking warehouse. In the last two years, Burinskiene [63] 
has proposed the volume-based storage method and the 
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usage of correlation between order picking efficiency and 
stock accuracy to achieve an optimization of order 
picking processes; Ene and O¨ztu¨rk [64] have instead 
used both the batching and routing problems to minimize 
travel costs in warehouse operations.  
 
A brief summary of some of the main complete papers  
on travel distance for stacking and picking procedures 
inside warehouses is presented below. 
 
Staking Picking 
Mayer [65], Francis [66], 
Hausman et al. [67], 
Graves et al. [68], Schwarz 
et al. [69], Bassan et al. 
[70], Bozer and White [71], 
Malmborg et al. [72], 
Malmborg [73], Hwang 
and Ko [74], Pandit and 
Palekar [75], Koh, Kim, 
and Kim [76], Pohl, 
Meller, and Gue [51], 
Chen and Li [77], Salah 
[78, Pohl et al. [79], Azzi et 
al. [80], Fumi et al. [38]  

Ratliff and Rosenthal [31], Hall [49], 
Petersen [44], De Koster et al. [45], 
Vaughan and Petersen [40], 
Petersen and Schmenner [81], 
Caron et al. [43], Roodbergen et al. 
[41], Hwang, Oh, and Lee [42], 
Roodbergen and Vis [52], Le-Duc 
and De Koster [53], Roodbergen, et 
al. [54], Muppani and Adil [60], 
Muppani and Adil [61], Ho, et al. 
[62], Burinskiene [63], Qiana and 
Jie, [39], Pan, et al. [46], Ene and 
Ozturk [64] 

Table 1. Literature review of travel distance models for different 
warehouse systems 

Generally speaking, optimal routing algorithms are 
infrequently used. Indeed, it seems that the application of 
the algorithm to layouts different to the model containing 
parallel aisles and a central depot has not been 
considered at all in the literature. The savings produced 
by using optimal algorithms are not clear in advance. It is 
also to be underlined that there are extra expenses and 
risks related to the implementation of the optimal 
algorithm, mainly because of its complexity. 
 
Without any loss of generality, it seems that no closed-
form evaluation technique is yet available to estimate the 
optimal tour length for a general number of picks [51] 
and that so far, the simulation required to forecast this 
length has been performed using routing heuristics while 
assuming a random storage policy [52, 53, 54]. It is well 
known that, in most contexts, different heuristics may 
lead to extremely different results [82].  
 
This paper seems to be the first to contribute to the 
estimation of material handling time reduction for 
picking operations, using optimal item allocation rather 
than a uniform distribution of picking and storage 
locations. Results are calculated through simulations, 
based on a variable picking list size, with the aim of 
underlining the effect of different slot-code optimization 
levels on the reduction of average distances travelled. The 
comparison is carried out both with and without the most 
commonly used heuristic.  

3. Warehouse layout design and routing methodologies  

A warehouse is usually organized with a number of aisles 
of equal length with products stored on both sides; in 
most cases, forklifts or trucks can traverse the aisles in 
both directions. Each order consists of a number of 
products; these may be located in different aisles. In this 
paper we assume that the items of each order must be 
picked in a single route, that the warehouse has a single 
I/O point and that the picking area has a cross aisle both 
at the front and the rear to enable aisle changes: these are 
generic assumptions that fit most industrial cases. 
 
Generally speaking, an order is received from the 
company and transformed into a picking list. This arrives 
at the warehouse and an order picker is sent into the 
picking area with the list to retrieve the requested items 
from storage. The process of picking products consists of 
a series of actions, ranging from positioning the vehicle to 
putting the picked items on a product carrier; most of the 
efforts to improve the operational efficiency of order 
picking are focused on routing, batching, and storage 
assignment: usually, however, a large part of an order 
picker’s time is spent travelling.  
 
Research regarding storage assignment is mainly 
concerned with rules for the assignment of products to 
storage locations. Existing rules vary from random 
policies, where storage locations are randomly assigned 
to products, to fast/slow-movers storage, where items 
with the highest pick frequency are assigned to the most 
accessible locations. Products may be divided into A, B, C 
classes according to their picking frequency, in order to 
simplify the slot-code allocation [81]. 
 
In this work, we consider a manual order picking 
operation where the order picker travels through a 
picking area to retrieve items from storage. In the 
literature, as stated above, a uniformly distributed item 
location is usually assumed. However, random storage 
is seldom used in practice: it may only occur in 
situations where the product assortment changes too 
fast to produce reliable statistics about demand 
frequency [57].  
 
In this paper, travel times under a uniform distribution 
assumption are compared with those obtained under the 
hypothesis of an optimal allocation. The maximum level 
of optimality is reached when the items with the highest 
picking frequency (“fast-movers”) are located nearer to 
the I/O point. Three levels of “optimality” are assumed, 
i.e., “low”, “medium” and “high” optimization, and are 
formalized in the following paragraphs. The estimates 
presented in this work may provide an easy-to-use 
criterion to obtain a rough evaluation for the expected 
picking travel distance and time in practical cases.  
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Different warehouse layouts have been analysed in the 
literature, by Gu, Goetschalckx, and McGinnis [83] as 
well as by Meller and Gue [84], showing different aisle 
designs such as “Flying-V”, “Fishbone” and “Chevron”. 
Due to their widespread use in industry, this paper 
concentrates on one-block unit-load warehouses 
(Figure 1).  

 
Figure 1. One-block warehouse vs. two-block warehouse 

A detailed description of order-picker routing policies, 
such as the “s-shape”, “return”, “mid-point”, “largest 
gap”, “combined” and “optimal” methods, was presented 
by De Koster, Le-Duc, and Roodbergen [24]. 

 
Figure 2. Order picking routing policies 

All of these techniques were originally developed for one-
block warehouses but can be used in a multiple-block 
context by implementing specific changes. According to 
Vaughan and Petersen [40] and Roodbergen and De 
Koster [30, 41], the combined heuristic returns the best 
results in 93% of analysed instances. According to this 
methodology, a decision whether to entirely traverse an 
aisle with at least one pick, or enter and leave the aisle 
from the same side, should be computed using dynamic 
programming [41].  
 
Despite using complex dynamic programming 
algorithms, industrial companies prefer to solve their 
picking routing problem with simple and easily 
manageable heuristics. Usually, the heuristic involves a 
preordination of the picks required by the picking list, 
starting from one side of the warehouse and proceeding 
on the basis of nearer picks. Thus, starting from the 
selected I/O point of the warehouse, unloaded material 
handling vehicles first horizontally and vertically move to 
the leftmost (or rightmost) location of the picking list; 
then, once they have reached this location and performed 
the picking operation, they horizontally and vertically 
move to the next nearest location for the second pick, 
accessing it from the front or the back cross aisle, 
depending on the minimum travel distance (Figure 2). 

After having performed all the picks of the picking list, 
they exit from the output point. Obviously, the vehicle 
does not enter aisles without picks. This heuristic is the 
one most commonly adopted in real contexts due to its 
simplicity: it is therefore also the heuristic considered in 
this analysis. 

 
Figure 3. Example of paths for selected picking cycle 

4. Simulation technique 

The main purpose of this work is to analyse the 
differences, in terms of picking distances and times, 
between three optimized slot-code location (OPT) 
scenarios and a random location (RAN) inside a 
warehouse. Warehouse management systems are 
currently used to gain an optimization of slot-code 
allocation, which clearly reduces stacking/picking travel 
times. Nevertheless, an exact estimation of this time 
reduction is considered to be of great significance for 
manufacturing, distribution and retailing companies, 
because it can help in the design of the warehouse as well 
as in determining the right type and number of handling 
vehicles. The comparison will be carried out through 
simulation over 100,000 runs, offering an original 
contribution to estimate the effects of picking heuristics 
on the reduction of picking average distances, varying the 
warehouse slot-code optimization level together with its 
I/O position and shape simulation. 
 
A generic stacking warehouse was considered. According 
to the literature, the rectangular shape is the optimal 
geometric shape to store pallets [85]; the initial storage 
area was therefore assumed to be rectangular, with one 
input and one output point: 
 
Xthe storage area longitudinal width;  
Y the storage area lateral depth; 
(xout ; yout)the output coordinates; 
(xin; yin)the input coordinates. 
 
where xout ≤ X  and yout ≤ Y, xin ≤ X and yin ≤ Y. 
 
All these variables are independent and could be varied 
to perform multiple what-if analyses. In order to consider 
the most common warehouse case, all simulation runs 
have been performed assuming a single input/output 
point located in the middle of the warehouse’s long side: 
this choice is also supported by evidence shown by 
Bassan, Roll, and Rosenblatt [70]: indeed. These authors 
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show how this configuration represents the best solution 
to minimize storage/retrieval travel times in warehouses 
with a longitudinal width twice the lateral depth.  
 
The 2-D coordinates of a single storage location in the 
warehouse can thus be identified by a pair (x;y). Forklifts 
are assumed to move following the “Manhattan” (i.e., 
“rectilinear”, “right-angle” or “l1”) metric [27]; thus, 
workers are able to travel along the two main orthogonal 
aisles at the front and back of the storage area as well as 
along cross aisles. 

4.1 Random generation of input variables 

Depending on the number of picks considered, one or 
more picking (xpick ; ypick ) points inside the warehouse are 
randomly identified for each run. The random generation 
rule, as performed by Hall [49] in the development of a 
heuristic to estimate a shortest tour length lower bound, 
followed a uniform distribution for the case in which no 
slot-code allocation optimization was performed; 
correspondingly, a specific custom distribution was used 
for the case with fast-mover items located near the 
input/output point. Thus, for the random case, for each 
pick point i: 
 
xpicki  =ξxi              where ξxi  is a random variable  0  ≤ ξxi ≤ X 

ypicki = ξyi              where ξyi  is a random variable  0  ≤ ξyi ≤ Y 

 
In the second case, in order to represent an optimized slot-
code allocation, the x and y coordinates of the picking points 
were generated with a random inverse transform sampling 
from Normal distribution. Considering that simulations 
assumed a single input/output point located on the 
warehouse front side (xin  = xout; yin  = yout  = 0), we have: 
 
xpick1  results from  

1 2
pick in1

x
xx

(x x )1 exp
22

ξ
σσ π

 − −
 = ⋅

⋅ ⋅  
  

where ξ x1  is a random variable 0  ≤ ξ x1 ≤ 1  
 
y pick1  results from 

1 2
pick1

y
yy

(y )1 exp
22

ξ
σσ π

 −
 = ⋅

⋅ ⋅  
  

where ξ y1  is a random variable 0  ≤ ξ y1 ≤ 1 
 
and analogously, for each pick point i, 
x picki  results from 

i i 1 2
pick picki

x
xx

(x x )1 exp
22

ξ
σσ π

− − −
 = ⋅

⋅ ⋅  
 

where ξ3  is a random variable 0≤ξ xi ≤1 
 
y picki results from  

y 2
picki

y
yy

(y )1 exp
22

ξ
σσ π

 −
 = ⋅
 ⋅⋅  

 

where ξ4  is a random variable 0  ≤ξ yi ≤ 1 
 
The user-specified input parameters σx  and σy  measure 
the spreading of products all over the storage area. Thus, 
the condition 

 

represents a case in which few or no products have been 
correctly assigned to slots (i.e., the slot-code allocation is 
far from being optimized) while 

 

displays a situation in which few fast-mover products 
have been located far from the input/output point. 
Clearly, due to Normal distribution right and left tails, 
generating the random coordinates with the inverse 
transform method led to the unacceptability of some 
coordinates; more specifically, values were discarded if at 
least one of the following conditions was verified for each 
pick point i: 
 
xpicki < 0 and    xpicki  > X 

ypicki < 0 and    ypicki  > Y 

4.2 Hypotheses on routing paths  

In the designed warehouse, picking operations were 
simulated using the following approach. A forklift truck 
was assumed to: 
 
1. start at the input point (xin; yin), unladen; 
2. horizontally and vertically move to the first (xpicki ; 

ypicki) picking location, with i = 1; 
3. perform the picking operation after reaching the 

picking location; 
4. horizontally and vertically move to the next (xpicki+1 ; 

ypicki+1) picking location; 
5. continue going to step 3 until the pick points are 

finished; 
6. horizontally and vertically move to the location (xout; 

yout);  
7. exit from the output point.  
 
According to the previously cited simple heuristic, the 
first pick will be the leftmost one on the picking list; when 
moving to the next pick point, the picker is assumed to 
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always choose the best alternative (shorter distance) 
between reaching the front or rear longitudinal aisle. 
Thus, the overall distance OD travels to perform a cycle 
on n picks is equal to:  

1 1
in pick in pick

i i 1
pick pick

n 1
i i 1

pick pick
i 1

i i 1
pick pick

n n
pick out pick out

OD x x y y

y y ;
min

2 Y y y

x x

x x y y

+

−
+

=
+

= − + − +

  +  +  + ⋅ − −   
 
+ −  

+ − + −

∑  

An overall number of more than 100,000 runs have been 
simulated, considering 2-pick, 6-pick and 10-pick cases 
varying the optimality of the warehouse slot-code 
allocation. When calculating picking distances in the best 
optimized slot-code location case, a high percentage of 
the 100,000 samples was discarded in each simulation 
run, due to picking coordinates outside warehouse 
boundaries. As a consequence, the relative picking 
distances were calculated basing on acceptable values 
only. 

5. Simulation results 

The presented results refer to simulations performed 
under the hypothesis of a unique input/output point 
located in the middle of the warehouse’s rear side, 
assuming a longitudinal width twice the lateral depth, 
thus: 
 
(xin ; yin)= (xout ; yout) = (X/2; Y) 
X = 2 ⋅Y 
 
The generation rule followed a uniform distribution for 
the random case, while a random inverse transform 
sampling from the Normal distribution was used to 
represent the optimal slot-code allocation case. Results of 
the forklift’s travel distance simulations are summarized 
in the following tables, comparing the optimized slot-
code allocation case (OPT) and the random case (RAN). 
In the former, three scenarios were considered, according 
to the methodology presented in Fumi et al. [38]. 
 
– A first scenario (LOW) characterized by a “low 

effective” slot-code optimization (e.g., fast-mover 
items turnover ratio similar to slow-movers) 
represented by σx = σy  = 26.6; 

– A second scenario (MED) characterized by a 
“medium effective” slot-code optimization, 
represented by a σx = σy  = 30.0 value; 

– A third scenario (HI) characterized by a “high 
effective” slot-code optimization (e.g., fast-mover 
item turnover ratio deeply different from slow-
mover ratio), represented by σx = σy = 16.0 value. 

Despite the fact that this paper does not focus on picking 
techniques but on the effect of slot-code optimization, for 
the sake of completeness the consequences of the 
heuristic adoption are presented in Table 2 and Table 3. 
Table 2 shows the average distances per pick considering 
an 80x40–metres rectangular storage area for a 2-pick, 6-
pick and 10-pick case, analysing either when the pick 
sequence is random or when it follows the described 
heuristic, both for optimized and un-optimized slot-code 
allocations. 
 
 Random picks Heuristic 
 2 Picks 6 Picks 10 Picks 2 Picks 6 Picks 10 Picks 
No opt 67,19 58,21 56,32 65,85 48,24 41,12 
Low opt 59,37 51,76 50,56 58,20 44,57 39,48 
Med opt 51,89 47,59 45,93 50,38 40,87 36,33 
High opt 42,75 40,58 39,89 41,25 35,04 31,27 

Table 2. Simulation results of average travelled distance in 
metres on an 80x40 m area 

The effects of the adoption of this simple picking heuristic 
following a higher or lower slot-code optimization are 
summarized in Table 3 as the: 
 
- percentage decrease from RAN  to OPT ( LOW ) case; 
- percentage decrease from RAN  to OPT ( MED ) case; 
- percentage decrease from RAN  to OPT ( HI ) case. 
 
 2 Picks 6 Picks 10 Picks 
No optimization 1,99% 17,14% 26,99% 
Low optimization 1,97% 13,89% 21,91% 
Medium optimization 2,91% 13,66% 21,62% 
High optimization 3,51% 13,64% 21,60% 

Table 3. Reduction of average travelled distance as a result of 
heuristic adoption 

As expected, simulation results display greater 
improvements as the number of picks in the picking list 
increases. Clearly, the percentage reduction of average 
distance per pick decreases if using effective slot-code 
allocation criteria, because improvement margins become 
narrower. Figure 4 and Figure 5 show this effect, 
representing the average distance per pick on the 80x40 m 
area.  

 
Figure 4. Average distance per pick (80x40 m area), random pick 
case 
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Figure 5. Average distance per pick (80x40 m area), heuristic case 

The following figures present the breakdown of the slot-
code optimization effects, in terms of  percentage 
decrease of the average distance per pick from the 
random case to each optimization degree case (LOW, 
AVG, HI),  respectively in 2-, 6- and 10-pick cases, both 
with and without the use of a picking heuristic. These  
numeric results are highly useful for manufacturing 
companies wishing to determine the right type and 
number of material handling resources, according to their 
capabilities in optimizing their warehouse. 

 
Figure 6. Reduction of average distance per pick (2-pick case) 

 
Figure 7. Reduction of average distance per pick (6-pick case) 

In the 2-pick case, a highly effective slot-code 
optimization can lead to up to a 36.4% reduction of the 
average distance per pick compared to a randomized 
item location in the warehouse. Clearly, the heuristic 
adoption does not change these results, because no 
improvement is possible to change the sequence of two 
picks only. 

 
Figure 8. Reduction of average distance per pick (10-pick case) 

Figure 7 and Figure 8 show that a further reduction of the 
average distance per pick is achieved as the number of 
picks increases, due to a higher pick-point density within 
the warehouse area. At the same time, it is possible to see 
that improvements due to a better slot-code optimization 
are reduced when the heuristic is used: this is because 
these percentages are computed comparing the optimized 
cases with the random allocation scenarios, where the 
heuristic has already managed to reduce the average 
distance per pick (as evident from the comparison of 
Figure 4 and Figure 5). 

6. Limitations of the study 

The research limitations include the assumptions of a 
unique size of storage locations (single shelf type) and of 
two-way aisles, which may not be valid for every 
industrial warehouse; however, these hypotheses have 
often been assumed in similar studies [36]. As well as 
removing the single shelf assumption and evaluating the 
influence of one-way aisles presence, future research 
should include simulations performed varying the shape 
of the storage area, the location and number of 
orthogonal aisles, the positions of the input and of the 
output point and, eventually, include material handling 
vehicles with different performance characteristics. 

7. Conclusion 

While the scientific literature mainly focuses on random 
slot-code allocations for traditional unit-load warehouses, 
the majority of companies are looking for a methodology 
to achieve optimal SKU placement without the need for 
expensive information systems. Furthermore, current 
research has mainly aimed to reduce warehouse 
operation costs through the minimization of material 
handling average travel distance by optimizing item 
location, instead of concentrating on picking operations. 
Given that over 50% of a warehouse’s overall expenses 
results from order picking operations, this paper, through 
multiple simulations, has aimed to be the first to address 
a precise and measurable estimation of picking material 
handling distances varying the slot-code assignment 
optimality – both when a simple picking heuristic is used 
and when it is not. Overcoming the single/dual command 
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hypothesis of the authors’ original work, the main 
purpose of this paper is thus to underline and quantify 
the advantages that emerge from using a slot-code 
optimization rather than a random one, comparing 
material handling systems performance for 2, 6 and 10-
picking cycles. Each comparison was carried out 
considering three different scenarios, respectively 
representing a null, low, medium and high level of slot-
code optimization. Notwithstanding an expectable 
decrement of travel distances from the random scenario 
to the optimal one, simulations helped in an exact 
determination of these reductions. The importance of 
these results is crucial, especially for manufacturing, 
distribution and retailing companies seeking both an 
efficient design for their warehouse and the most 
appropriate type and number of material handling 
vehicle [82].  
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